"Confidential"

Cloud Top Height Estimation using Satellite Image and Ground Based Image

Oct.25th,2017

Takuro HANYU

Weathernews Inc.

Conclusion

How wonderful is **novelty using ground based image** taken by you to get detailed information of the upper layer.

Benefits

- To use as observational data.
- To correct of the upper temperature as initial value of NWP for data assimilation.
- To correct the 3D form for visualization.

- Background
- Satellite data upgrading : High resolution & High frequency
 - 2017 Nov. 30th~ GOES-16
 - 2015 Jul. HIMAWARI-8

Inc. All rights reserved.

Data

- Satellite image : HIMAWARI-8
- Ground based image : weather report
- Method
 - Geometric approach : Coordinate transformation,
 Perspective projection, Cross-correlation function

Results

error evaluation

h_real - h_img > f (FOV, pix, G, AD), range, growth speed

Satellite image

Himawari-8 infrared (Band 13 : 10.4μm) Resolution : 2km , Time frequency : 2.5min

Ground based image

- Weather report
 Picture taken by supporter
 GPS, azimuth, elevation
- Web camera

Time frequency : 1min GPS, azimuth, elevation

Supporter Information

Weather reports from an average 130,000 people per day 250,000 people participating during typhoons

Processing(1/3)

→ Earth-fixed coordinate system

→ Viewpoint coordinate system

All rights reserved.

Processing(2/3)

→ Perspective projection

(to reproduce like a image taken by smartphone)

→ Shadow processing

(to get the skyline from image)

→ Skyline image from satellite

→ Cross-correlation function

(Azimuth with the highest correlation is taken as positive)

$$\boldsymbol{\phi}_{\boldsymbol{x}\boldsymbol{y}}(\boldsymbol{m}) = \frac{1}{N} \sum_{\boldsymbol{n}=\boldsymbol{0}}^{N-1} \boldsymbol{x}(\boldsymbol{n}) \boldsymbol{y}(\boldsymbol{n}+\boldsymbol{m}) \qquad r_{k} = \frac{\sum_{i=1}^{n-k} (x_{i} - m \mathbf{1}_{k})(y_{i+k} - m \mathbf{2}_{k})}{\sqrt{\sum_{i=1}^{n-k} (x_{i} - m \mathbf{1}_{k})^{2}} \sqrt{\sum_{i=1}^{n-k} (y_{i+k} - m \mathbf{2}_{k})^{2}}} \\ m \mathbf{1}_{k} = \sum_{i=1}^{n-k} x_{i} / (n-k) \quad , \quad m \mathbf{2}_{k} = \sum_{i=1}^{n-k} y_{i+k} / (n-k)$$

Sample results (1/3)

<INPUT>

report 2015-08-03 07:52:01(UTC)

satellite 2015-08-02 07:51:44(UTC)

<OUTPUT>

cross-correlation coefficient : 0.82

h_img(satellite)	8,567m	
h_real(report)	7,310m	
brightness temp	232.5K	served.

Sample results (2/3)

<INPUT>

report 2017-08-19 06:42:53(UTC)

satellite 2017-08-19 06:41:46(UTC)

<output>

cross-correlation coefficient : 0.88

h_img(satellite)	7,897m	
h_real(report)	8,793m	
brightness temp	236.8K	served.

Sample results (3/3)

<INPUT>

report 2015-08-02 06:05:24(UTC)

satellite 2015-08-02 06:01:49(UTC)

Azimuth : ESE / Elevation : 23.2 °

<output>

cross-correlation coefficient : 0.58

h_img(satellite)	8,712m	
h_real(report)	10,146m	
brightness temp	231.5K	served

11

h_real - h_img > f (FOV, pix, G, ADC) +range, +growth speed (1) (2) (3) (4)

(1) resolution from camera spec

ex) ~25m

(2) elevation from accelerometer

ex) ~90m

(3)range

ex) 3km \sim (need to see the cloud top of cg, cb) (4)growth speed

ex) \sim 480m/1min (The case of the earliest cumulonimbus)

(example)

- Model : iPhone6 plus
- Image size : width 2448pix , height 3264pix
- Focal length : 29mm
- FOV : 73° (horizontal 64° : vertical 45°)

- Resolution
 - = Distance $\times \tan \theta$
 - ≈ ~25m
 - $\theta = FOV/pix = 0.0138^{\circ}$

Accelerometer

(example : iPhone6 plus)

- ADC range : 14bit
- Acceleration range : ±2g
- \rightarrow error range = ±1mg = ±0.05°

Conclusion

Proposal new method to estimate cloud top height & correct the temperature of the upper layer.

Method

To correct the height compared to the skyline between satellite and ground based image by geometric approach.

Consideration (Error evaluation)
 h_real - h_img > f (FOV, pix, G, AD) + range, +growth speed

Observation + Eye-Servation

